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We use a lubrication theory approximation to formulate a model for the reactive
spreading of drops that deposit an autophobic monolayer of surfactant on a sur-
face. The model consists of a Poisson equation on a moving domain with boundary
conditions that depend on the history of the domain motion. We develop a numer-
ical algorithm for solving the model, using the immersed interface method and the
level-set method. Numerical solutions for traveling drops are qualitatively similar to
experimental observations of reactive autophobic spreading. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

When a liquid drop of a solution of the surfactant hexadecanethiol (HDT) in hexadecane
is placed on a gold surface, the drop deposits an HDT monolayer on the gold, which affects
the wetting properties of the surface. For a wide range of HDT concentrations, the drop
moves spontaneously over the surface, a phenomenon called reactive autophobic spreading
[4]. The motion of the drop is caused by the difference between the static contact angles at
the front of the drop, where the liquid spreads out over the gold surface, and the rear of the
drop, where the liquid retracts on the HDT monolayer deposited during its passage. The
deposition of self-assembled monolayers of organic films by drops has significant potential
for the preparation of surfaces in a variety of industrial applications [4, 6, 7].

In this paper, we formulate a model, based on Greenspan’s lubrication theory approx-
imation [14], that describes the coupling between the motion of a drop and the deposi-
tion of a surfactant monolayer. The model consists of a Poisson equation for the drop
height on a moving domain, together with conditions for the velocity of the domain bound-
ary that incorporate the effect of surfactant deposition. We develop a numerical scheme
to compute solutions of the model, using an immersed interface method to solve the
Poisson equation, and a level-set method to evolve the moving domain. The numerical
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solutions include traveling drops that are qualitatively similar to those observed in
experiments.

The methods used here can be adapted to treat other problems in which a liquid drop
affects the wetting properties of the surface on which it moves. For example, a solvent
drop on a polymer surface may solvate or swell the surface [3], and in metallurgy a solder
drop on a metal substrate or a molten metal drop on a ceramic substrate may react with the
substrate (see, for example, [5, 10]). More generally, the level-set approach should be useful
in a wide variety of problems involving drop motion, which are often analyzed in a one-
dimensional approximation because of the analytical difficulties in treating the geometry
of a two-dimensional wetted region. Similar methods may also be useful in the study of
cell motion in biology. For example, some of our numerical solutions for the evolution of
drops resemble the motile behavior of keratocyte cells in wound healing [18]. These cells
deposit an actin network on the surface over which they move [25], in an analogous way to
the deposition of surfactant by a drop.

2. THE MODEL

To model the motion of the drop, we make the following assumptions.

1. The drop has constant mean curvature �(t) at each time t .
2. The drop volume Q is constant in time.
3. The drop is thin and the dynamic contact angle � is small.

The first assumption can be derived from the incompressible Navier–Stokes equations
under certain approximations, including lubrication theory and sufficiently slow motion of
the drop [14]. The second assumption follows from the incompressibility of the fluid. The
third assumption is consistent with the lubrication theory approximation. We consider a
drop that moves on a horizontal surface, so we neglect the effect of gravity.

The region of the surface wetted by the drop at time t we denote �(t) ⊂ R
2. The contact

line is the boundary ∂�(t) of �(t). We let h(�x, t) > 0 denote the height of the drop at a
point �x ∈ �(t) at time t . Since the drop is thin, we may approximate the mean curvature
of the drop surface by −�h. The above assumptions imply that the wetted region �(t) and
the drop height h(�x, t) satisfy the equations

−�h = �(t), �x ∈ �(t),

h = 0, �x ∈ ∂�(t), (2.1)∫
�(t)

h(�x, t) d A = Q.

The dynamic contact angle is given by

tan � = |∇h|.

For thin drops, we approximate this relation by

� = |∇h|,

but we can use either relation in the numerical simulations.
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We assume that the outward normal velocity Vn of the contact line depends on the dynamic
contact angle. A convenient choice for this dependence is [8]

Vn =




K (� − �A)m, if � ≥ �A,

0, if �R < � < �A,

−K (�R − �)m, if � ≤ �R .

(2.2)

Here, �A ≥ �R denote the advancing and receding contact angles, respectively, and K > 0,
m ≥ 1 are constants.

Let � (�x, t) denote the time that a point �x has been wetted by the drop up to time t .
To model the effect of surfactant deposition, we suppose that the advancing and receding
contact angles are functions of � . For definiteness, we suppose that

�A(�x, t) = �AM F

(
� (�x, t)

TM

)
, �R(�x, t) = �RM F

(
� (�x, t)

TM

)
, (2.3)

where the constants �AM and �RM are the advancing and receding contact angles, respec-
tively, of the drop on a fully deposited monolayer, TM is a time scale for the deposition of
the monolayer, and F is a monotonically increasing function with F(+∞) = 1. If the bare
surface is perfectly wetting, then F(0) = 0. The time scale TM depends on the concentration
of the surfactant in the drop, with larger concentrations corresponding to smaller deposition
time scales TM . The deposition of a monolayer has a negligible effect on the concentration
of surfactant, except possibly at low concentrations and large times, so we assume that TM

is a constant. For our sharp interface formulation, the contact angle is only defined at the
boundary of the wetted region �(t) and it is the difference between the dynamic contact
angle and the advancing and receding contact angles, respectively, that drives the motion of
the droplet. Of course, the deposition of surfactant and the motion of the contact line may
be influenced by many other physical effects, such as the flow inside the drop, the transport
and diffusion of surfactant, the possible existence of a precursor film ahead of the contact
line, surface roughness, and external noise. We neglect these effects in our present model.

To write an expression for the wetting time � , we introduce the characteristic function
��(t) of the wetted region, defined by

��(t)(�x) =
{

1, if �x ∈ �(t),

0, if �x /∈ �(t).
(2.4)

The wetting time function � is given by

� (�x, t) = �0(�x) +
∫ t

0
��(s)(�x) ds, (2.5)

where �0(�x) is the wetting time of �x at t = 0.
Equations (2.1)–(2.5) are the model. The main new feature, in comparison with

Greenspan’s equations [14], is the dependence of the advancing and receding contact angles
on the wetting time. We suppose that Q, K , �AM , �RM , TM are given parameters, and F is
a given function. The initial data are the wetted region �(0) and the wetting time �0(�x). We
want to find the wetted region �(t) at later times, together with the drop height h(�x, t), the
drop curvature �(t), and the wetting time � (�x, t). The amount of surfactant deposited on
the surface is determined by the wetting time.
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FIG. 1. An experiment result from [4] (reprinted with permission from [4]. Copyright 1994 American Chem-
ical Society). The caption from [4] reads as follows: Drops of 1 mM HDT in hexadecane moved, and were not
pinned, across the surface of bare gold at rates of ∼1 mm/s. The volume of these drops was ∼5 �L. (A) The drop
shape after 1.267 s of contact with the bare gold surface. (B) The drop 0.067 s later than A, begins to dewet the
gold because SAM formation results in a finite contact angle between the drop and the surface. (C) The drop 2000 s
later than B, pushed forward at a steady rate of 1 mm/s. The results agree with the simulations in Figs. 2 and 11
and with some of simulations in Fig. 15 qualitatively.

While (2.1)–(2.5) is a simplified model for reactive autophobic spreading, the agreement
between the experimental observations shown in Fig. 1 and our numerical solutions shown
in Fig. 2 (see also Fig. 18) indicate that it contains the essential features of the phenomenon,
at least within certain, realistic parameter ranges.

To identify the dimensionless parameters in the problem, let L be a characteristic diameter
of the wetted region �(t) and H a characteristic height of the drop. A characteristic angle
is then 
 = H/L , and a characteristic velocity scale associated with the “pulling” of the
contact line is

U = K
m .

As a characteristic time scale for the drop motion, we use

TD = L

U
.

Denoting dimensionless variables by a bar, we define

�̄x = �x
L

, t̄ = t

TD
, h̄ = h

H
, �̄ = L2�

H
, �̄ = �



, �̄A = �A



, �̄R = �R



, �̄ = �

TD
.
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FIG. 2. Numerical solutions with contact-angle hysteresis. The contact-line velocity is given by (5.10), and
the advancing and receding contact angles are given by (5.11) with �A = 1.2, �R = 1. The drop volume is q =
0.0157�. The solutions are computed on a 200 × 200 grid except in (d), which is computed on a 300 × 300 grid.
(a) T = 0.5, m = 1; (b) T = 0.5, m = 3; (c) T = 5, m = 1; (d) T = 5, m = 3.

Transforming (2.1)–(2.5) into the barred variables, then dropping all bars, we find that the
dimensionless problem is

−�h = �(t), �x ∈ �(t),

h = 0, �x ∈ ∂�(t), (2.6)∫
�(t)

h(�x, t) d A = q,

where the order one parameter q is given by

q = Q

H L2
. (2.7)
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The contact line velocity is given by

Vn =




(|∇h| − �A)m, if |∇h| ≥ �A,

0, if �R < |∇h| < �A,

−(�R − |∇h|)m, if |∇h| ≤ �R,

�x ∈ ∂�(t), (2.8)

�A = f A(� ), �R = fR(� ), (2.9)

where � is given by (2.5) and the advancing and receding contact angle functions f A, fR

are given by

f A(� ) = �A F

(
�

T

)
, fR(� ) = �R F

(
�

T

)
.

Here, the dimensionless parameters �A, �R , T are defined by

�A = �AM



, �R = �RM



, T = TM

TD
.

The most important parameter is T , which is the ratio of a time scale TM for the monolayer
deposition and a time scale TD for the motion of the drop. Higher surfactant concentrations
correspond to more rapid deposition, and therefore to smaller values of T .

In most of our solutions, we will neglect contact-angle hysteresis (for reasons stated
below), meaning that �A = �R , and assume a linear relation between the contact-line velocity
and the dynamic contact angle, corresponding to m = 1 in (2.8). In that case, we may write

Vn = |∇h| − �S, (2.10)

�S = f (� ), (2.11)

where

f (� ) = �F

(
�

T

)

and �, T are parameters.
A simple choice of the functions F and f , which describe a surface that is perfectly

wetting in the absence of a monolayer, is given by

F(t) =
{

t, if 0 ≤ t ≤ 1,

1, if t > 1,
f (� ) =

{
��/T, if 0 ≤ � ≤ T,

�, if � > T .
(2.12)

It is useful to reformulate the problem, both for the analysis and for the numerical
computations, by introducing a scaled height function 	 , defined by

	 (�x, t) = h(�x, t)

�(t)
. (2.13)

Elimination of h from (2.6) gives the following problem for 	:

−�	 = 1, �x ∈ �(t),
(2.14)

	 = 0, �x ∈ ∂�(t).
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Considering the case (2.10), for simplicity, the contact-line velocity is determined from

Vn = �|∇	 | − �S, �x ∈ ∂�(t),
(2.15)

�(t) = q∫
�(t) 	(�x, t) d �x ,

where the static contact angle �S is given by (2.5) and (2.11). The height function h may be
recovered from 	 and � by

h(�x, t) = q	 (�x, t)∫
�(t) 	 (�y, t) d �y . (2.16)

Finally, we consider in more detail the applicability of the above assumptions to the
experiments on reactive autophobic spreading reported in [4]. Hexadecanethiol (HDT) and
hexadecane are organic liquids with similar surface tension and viscosity. Hexadecane is
perfectly wetting on a gold surface, and a pure hexadecane drop spreads into a thin uniform
film, which eventually breaks up. HDT deposits a self-assembled monolayer (SAM) on a
gold surface, and both HDT and hexadecane are partially wetting on the SAM. When a
drop of pure HDT is placed on a gold surface, it deposits a SAM, then retracts on the SAM
into a stationary drop. This phenomenon is called autophobic pinning. A drop that consists
of a solution of HDT in hexadecane, with a concentration between about 1 �M and 0.1 M,
travels across the surface with a roughly constant shape and velocity until the entire surface
is covered by a SAM, or until the HDT in the drop is depleted.

The drop shown in Fig. 1 consists of a 1 mM solution of HDT in hexadecane, with a
diameter of approximately 1 mm. After about 1 s of contact with the gold surface, the
drop starts to move, then accelerates until it travels with a constant velocity U of the
order 1 mm/s. The viscosity � and the surface tension 
 of hexadecane, at 25 C, are
approximately � = 3 mPa/s and 
 = 30 mN/m [24]. The corresponding capillary number
C = U�/
 = 10−4 is small, indicating that surface tension forces dominate viscous forces
in the motion of a drop, except in the immediate vicinity of the contact line [26]. Surfactants
on the surface of the drop may play a role in the experiments, for example by inducing
Marangoni effects, but since surfactant deposition on the solid surface is the primary cause
of the drop motion, it is reasonable to begin with a quasistatic model and assume that the
mean curvature of the drop depends only on time.

The measured contact angle at the front of the traveling drop in Fig. 1 scanned from [4]
is less than 5◦, while at the rear it is approximately 40◦. The rear angle is too large to expect
that lubrication theory applies quantitatively, but in view of the resulting simplifications,
it is a valuable qualitative model. The drop shown in Fig. 1 has an HDT concentration
of 1 mM. Reactive autophobic spreading is observed for HDT concentrations as low as
≈1 �M. For these smaller HDT concentrations, the monolayer at the rear of the drop is not
fully organized, and the receding contact angle is less, so a lubrication theory approximation
should be more accurate.

The deformation and motion of the drop is caused by the large difference between the
static contact angles of the unwetted gold surface onto which the drop spreads and the SAM
at the rear of the drop from which it retracts. This difference is much larger than the difference
between the advancing and receding contact angles of the drop on a fully deposited SAM.
The advancing contact angle of HDT on a fully deposited HDT monolayer is approximately
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53◦, and the receding contact angle is approximately 46◦. These considerations suggest that
it is reasonable to neglect contact-angle hysteresis in a first approximation.

We could use other relations for the dependence of the contact-line velocity on the
dynamic contact angle, as well as more-detailed models for the fluid flow near the contact
line [11, 15, 16, 26, 29]. Our main interest, however, is in studying the global effect of
surfactant deposition on the bulk motion and deformation of the drop, and we will not
investigate other contact-line models here.

3. ANALYTICAL SOLUTIONS

In this section, we give some analytical solutions of the model equations that illustrate
the reactive spreading of drops, or that are useful in testing the numerical scheme.

3.1. Circular Drops

Equations (2.14)–(2.15) have an exact equilibrium solution for a drop with a circular
wetted region on a surface with a constant static contact angle �S = �0 > 0. We use polar
coordinates (r, �). The equilibrium radius of the wetted region is r = a0, where

a0 =
(

4q

��0

)1/3

. (3.1)

The scaled height function of the drop is 	 = 	0(r ), and the mean curvature is � = �0,
where

	0(r ) = 1

4

(
a2

0 − r2
)
, �0 = 8q

�a4
0

. (3.2)

Two exact solutions for circular wetted regions and the linear stability analysis of the
above equilibrium solutions are given in [14]. The exact solutions are useful for testing
our numerical method. In the first solution, we suppose that the static contact angle �0 is
constant, and the initial shape of the wetted region is a circle whose radius r0 is different
from equilibrium radius a0 in (3.1). The solution is a circular wetted region of radius a(t),
with

	 = 1

4
(a2 − r2), � = 8q

�a4
, h = 2q

�a4
(a2 − r2). (3.3)

The radius a(t) of the wetted region satisfies the ordinary differential equation

ȧ = �0

[(
a0

a

)3

− 1

]
, a(0) = r0. (3.4)

If r0 < a0, the wetted region expands, whereas if r0 > a0 the wetted region contracts, and
a(t) → a0 as t → +∞.

The second exact solution describes a circular wetted region moving across a surface
whose static contact angle depends linearly on a Cartesian coordinate x . That is,

�S = �0(1 − �x), (3.5)
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where �0 and � are constants. We assume that �S > 0 in the wetted region. A solution to
(2.6) is then given by a circular wetted region of radius a(t), whose center is located at
(x, y) = (s(t), 0), where

ȧ = �0

[(
a0

a

)3

− 1 + �s

]
, ṡ = ��0a. (3.6)

Here, a0 is defined in (3.1). For small �, the radius approaches a value close to a0 and the
circle then moves slowly to the right, with velocity ṡ ∼ ��0a0.

3.2. Traveling Drops

In this subsection, we formulate a free boundary value problem for the shape of the wetted
region of a drop that travels with constant velocity without change of shape. We use the
perturbation method of Greenspan [14] to solve this problem in the case of a nearly circular
wetted region on a partially wetting surface.

The wetted region in a reference frame moving with the drop we denote �. We use
Cartesian coordinates �x = (x, y) or � = (,�) on the surface and suppose that the drop
velocity is �V = V �ex , where V > 0 and �ex is the unit vector in the x-direction.

Given a point �x ∈ �, we define ��(�x) as the length of the horizontal segment to the right
of �x which intersects �. That is,

��(�x) = L1(I�[�x]), (3.7)

where L1 denotes one-dimensional Lebesgue measure, and I�[�x] is the set defined by

I�[(x, y)] = {(,�) ∈ � :  > x and � = y}.

The wetting time � (�x) at a point �x in the reference frame moving with the drop is given by

� (�x) = ��(�x)

V
.

From (2.11), the static contact angle at �x ∈ ∂�, i.e., the contact line, is

�S(�x) = f

(
��(�x)

V

)
. (3.8)

The unit outward normal �n to the boundary of the wetted region is given in terms of the
scaled height function 	 by

�n = − ∇	

|∇	| . (3.9)

It follows that the normal velocity of the contact line is given by

Vn = −V
	 x

|∇	| . (3.10)
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Using (3.8) and (3.10) in (2.10) and (2.14), we obtain the free boundary value problem,

−�	 = 1, �x ∈ �,

	 = 0, �x ∈ ∂�, (3.11)

�0|∇	| + V
	 x

|∇	| = f

(
��(�x)

V

)
, �x ∈ ∂�,

where �0 is the constant mean curvature of the traveling drop and �� is defined in (3.7).
Given a constant �0 and a nonnegative, monotonically increasing function f , the problem
is to find a speed V , a region � ⊂ R

2, and a scaled height function 	 that satisfy (3.11).
When the bare surface is partially wetting and the effect of the surfactant is weak, we can

solve this free boundary value problem by perturbing off the circular, equilibrium solution
in (3.1)–(3.2). We suppose that the contact-angle function f in (3.11) is given by

f (� ) = �0 + �g(�� ), (3.12)

where �0 > 0 is a positive constant, � is a small parameter, and g(t) is an increasing function
of t with g(0) = 0. We use polar coordinates (r, �). When � = 0, an exact solution of (3.11)
is given by � = �0, 	 = 	0(r ), and V = 0, where

�0 = {(r, �) : r < a0}, 	0(r ) = 1

4

(
a2

0 − r2
)
, a0 = 2�0

�0
. (3.13)

For small �, we write the equation of the perturbed contact line ∂� as

r = a0 + �b(�) + O(�2) (3.14)

and look for an asymptotic solution to (3.11) of the form

	 = 	0(r ) + �	1(r, �) + O(�2),

V = �V1 + O(�2), (3.15)

�� = �0 + O(�).

Here, �0 is the length function (3.7) of the circular domain �0, which is given by

�0(�) =
{−2a0 cos �, if �/2 ≤ � ≤ 3�/2,

0, if −�/2 ≤ � ≤ �/2.
(3.16)

We use (3.12)–(3.15) in (3.11), Taylor expand the result with respect to �, and equate
coefficients of �. After some algebra, we find that

−�	1 = 0, in r < a0,

	1 = 1

2
a0b, on r = a0, (3.17)

�0	1r = 1

2
�0b − V1 cos � − g

(
�0

V1

)
, on r = a0.

The first two equations of (3.17) imply that 	1r |r=a0 is given in terms of b by

	1r |r=a0 = 1

2
K[b], (3.18)
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where the Dirichlet-to-Neumann operator K is defined by

K
[ ∞∑

n=−∞
bnein�

]
=

∞∑
n=−∞

|n|bnein�. (3.19)

The use of (3.18) in the third equation of (3.17) implies that b satisfies

1

2
�0{b − K[b]} = G(�, V1), (3.20)

where

G(�, V1) = V1 cos � + g

(
�0(�)

V1

)
. (3.21)

We expand b and G in Fourier series,

b =
∞∑

n=−∞
bnein�, G =

∞∑
n=−∞

Gnein�. (3.22)

From (3.16) and (3.21), we have G−n = Gn and

G1 = 1

2
V1 − 1

�

∫ �/2

0
g

(
2a0

V1
cos �

)
cos � d�,

(3.23)

Gn = (−1)n

�

∫ �/2

0
g

(
2a0

V1
cos �

)
cos n� d�, if |n| �= 1.

The use of Eqs. (3.19) and (3.20) in (3.20) implies that

1

2
�0(1 − |n|)bn = Gn. (3.24)

Thus, Eq. (3.20) is solvable for b if and only if G1 = 0. From (3.23), it follows that the
first-order drop velocity V1 satisfies the equation

V1 = 2

�

∫ �/2

0
g

(
2a0

V1
cos �

)
cos � d�. (3.25)

Since the right-hand side of (3.25) is a positive decreasing function of V1, this equation has
a unique positive solution for V1.

The solution of (3.20) is not unique, since b1 is arbitrary. This Fourier coefficient corre-
sponds to a small translation of the drop, and we set it equal to zero for simplicity. From
(3.22) and (3.24), the location of the contact line is then given by (3.14) with

b(�) = 2G0

�0
− 4

�0

∞∑
n=2

Gn

n − 1
cos n�.

For example, suppose that the contact-angle function f is a linear function of the wetting
time,

f (� ) = �0 + �2�. (3.26)
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This function is a Taylor approximation of more-general contact-angle functions in a slow
deposition limit on a partially wetting surface. The corresponding function g in (3.12) is

g(t) = t. (3.27)

Using (3.27) in (3.25) and solving the resulting equation, we find that V1 = a1/2
0 . Thus,

from (3.15), the velocity of the traveling drop is

V = �a1/2
0 + O(�2). (3.28)

The square-root dependency of the drop velocity on the radius is a consequence of the
following scalings: (a) the drop velocity is proportional to the difference between the static
contact angles at the rear of the drop and the front of the drop; (b) the static contact-
angle difference is proportional to the passage time of the drop; (c) the drop passage time
is proportional to the radius of the wetted region and inversely proportional to the drop
velocity.

When g is given by (3.27), the perturbation b of the contact line is given by

b(�) = 8a1/2
0

��0

{
1

2
+

∞∑
m=1

(−1)m

(2m − 1)(4m2 − 1)
cos 2m�

}
. (3.29)

From (3.14) and (3.29), the x-diameter dx and the y-diameter dy of the wetted region are
given by

dx = 2a0 + 8�a1/2
0

��0
(1 + 2D) + O(�2), dy = 2a0 + 8�a1/2

0

��0
(1 + 2S) + O(�2), (3.30)

where

D =
∞∑

m=1

(−1)m

(2m − 1)(4m2 − 1)
, S =

∞∑
m=1

1

(2m − 1)(4m2 − 1)
.

The numerical values of D and S are D ≈ −0.315 and S ≈ 0.366. Thus, the mean diameter
of the wetted region is larger than the equilibrium diameter of the circular wetted region of a
drop with the same mean curvature on a surface with uniform static contact angle �0, and the
drop is elongated in the direction orthogonal to its direction of motion. In Section 5.2, we
compare this asymptotic solution with a numerical solution for a nearly circular traveling
drop (see Fig. 12 and Table III).

We cannot obtain a solution for traveling drops on a perfectly wetting surface in this way,
because there is no equilibrium solution in that case. In fact, there cannot be any traveling
drop solutions with smooth contact lines on a perfectly wetting surface. To see this, suppose
for contradiction that the wetted region � of the traveling drop belongs to the Hölder class
C2,� for some � > 0. It then follows [13] that the solution of −�	 = 1 for the scaled height
function satisfies 	 ∈ C2,�(�̄). If the drop travels in the x-direction, then at a top or bottom
point of the contact line ∂� where y has an extreme value, the gradient of 	 must equal
zero, since otherwise the contact line would move outward in the y-direction, contradicting
the assumption that the wetted region moves without change of shape. We introduce local
orthogonal coordinates (s, n), where s is the arclength along the contact line and n is a
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coordinate normal to the contact line. Then since �	 < 0 and 	 = 0 on ∂�, we see that
	nn < 0 at the extreme point, which implies the contradiction that 	 < 0 inside the wetted
region. This argument does not prove the nonexistence of traveling drops whose contact
lines have cusps at the top and bottom edges, for example, but if such traveling drops exist,
any smoothing of the cusps would destroy them.

4. THE NUMERICAL METHOD

In this section we combine the level-set method and the immersed interface method to
develop a Eulerian formulation to capture the shape and motion of reactive spreading drops
on a fixed Cartesian grid. We extend the immersed interface method to solve the Possion
equation on an arbitrary domain. We also modify the standard level-set method to monitor
the splitting or merging of drops and to enforce the conservation of each drop volume instead
of the total volume. The framework of our numerical algorithm can be easily adapted to
models of more complicated physics and contact-line dynamics.

We represent the moving contact line ∂�(t) as the zero level-set of a two-dimensional
level-set function �(�x, t), such that

�(t) = {�x : �(�x, t) < 0}, ∂�(t) = {�x : �(�x, t) = 0}.
Given the level-set function at some time, we solve the Poisson equation in (2.14) for the
scaled height function 	 by means of an immersed interface method, compute the normal
velocity Vn of the boundary from 	 , and update the level-set function � by solving a
Hamilton–Jacobi equation,

�t + Vn|∇�| = 0. (4.1)

An outline of one time step of the algorithm is as follows.

1. Compute the drop height.
• Use a modified fast immersed interface method, described in the next subsection,

to solve the Poisson equation for 	 ,

−�	 = 1, in �(t),

	 = 0, on ∂�(t).

• Compute the mean curvature � from volume conservation,

� = q∫
�(t) 	 dx dy

,

where q is the drop volume. If there is more than one drop, then � is evaluated separately
for each connected component of the set on which � is negative.

• The height of the drop is h = � 	 .
2. Compute the normal velocity at the boundary.

• Use a weighted least-squares interpolation algorithm to compute ∇h near the bound-
ary (see [22]).

• Evaluate the static contact angle �S(�x, t) at the boundary.
• Compute the normal velocity of the boundary, Vn = |∇h| − �S .
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3. Evolve the contact line by use of a local level-set method and reinitialize if necessary.

There is a subtlety in grid resolution for the wetting time when the static contact angle
is affected by the surfactant deposition. Although the wetting time � is continuous in space
according to the definition (2.5), |∇� | = 1

|Vn | . If the droplet is close to equilibrium solution
or the contact line is moving slowly, we need fine grid resolution to resolve the wetting
time and hence the static contact angle. In our numerical experiments, grid refinements are
used to ensure the convergence. We now give a more detailed description of the immersed
interface method and the level-set method.

4.1. Fast Poisson Solvers on Irregular Domains

In order to compute the drop height, we need to solve a Poisson equation on an irregular
domain whose shape varies in time. We use a Poisson solver based on the the fast immersed
interface method (IIM) developed in [22] and a modified version developed in [17]. The
modification is needed because the original IIM in [20, 22] is designed for interface problems
that are defined in the entire domain with discontinuities that occur at the interface. The
main idea of our method is to extend a Poisson equation on an irregular domain � to a
Poisson equation on a larger, rectangular domain R ⊃ �. This procedure allows the use
of fast Poisson solvers on a fixed Cartesian grid that does not depend on the shape of
the irregular domain. The extension of the irregular domain �, which may have several
connected components �i , is illustrated in Fig. 3. In this subsection, we will omit the time
dependency for simplicity.

We extend the source term in the Poisson equation by zero outside � and impose zero
Dirichlet conditions on the boundary ∂ R of the rectangle. We require that the normal
derivative of the solution 	 is continuous across the immersed boundary ∂� of the irregular

[ψn] = 0

[ψ] = v

[ψ] = v

ψ = 0

ψ = 0

ψ = 0

ψ = 0

∆ψ = 0

Ω1

∆ψ = −1

Ω2

∆ψ = −1

[ψn] = 0

FIG. 3. A sketch of the extension from an irregular to a rectangular domain. In this illustration, there are two
drops, with corresponding wetted regions �1 and �2.
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domain, but we allow a finite jump v in the solution itself. In the language of potential
theory, this requirement is equivalent to the introduction of a double-layer source on ∂�.
This extension leads to the following interface problem,

�	 =
{−1, if �x ∈ �,

0, if �x /∈ �,

[	n] = 0, on ∂�, (4.2)

[	 ] = v, on ∂�,

	 = 0, on ∂ R,

where 	n denotes the normal derivative of 	 on ∂� and [·] denotes the jump across ∂�.
We choose v so that the solution 	 of (4.2) satisfies the Dirichlet boundary condition

	 − = 0, on ∂�, (4.3)

where 	 − is the limiting value of 	 on ∂� taken from the inside of �.
To numerically compute the solution of (4.2)–(4.3) for 	 and v, we discretize the im-

mersed boundary ∂�. This boundary is given as the zero level set of a level-set function
�(x, y). The level-set function then is defined as a grid function �i j = �(xi , y j ). Let

�max
i, j = max{�i−1, j , �i, j , �i+1, j , �i, j−1, �i, j+1},

(4.4)
�min

i, j = min{�i−1, j , �i, j , �i+1, j , �i, j−1, �i, j+1}.

We call (xi , y j ) an irregular grid point if �max
i, j �min

i, j ≤ 0. Otherwise the grid point is a regular
grid point1. We then compute the projections (x∗, y∗) of the irregular grid points onto
the boundary, as illustrated in Fig. 4. The detailed algorithm for finding the projections is
explained in [17, 23].

The vector of the discretized values of 	 on R we denote �, and the vector of the
discretized values of the jump v at the projections of the irregular grid points that lie
inside the wetted region is V . On an N × N grid, the number of components N� of �

is approximately N 2, while the number of components NV of V is of the order N . Using
the IIM [20, 21] to discretize the interface problem (4.2), we get a system of N� linear
equations of the form

A� + BV = F1, (4.5)

where A is the discrete Laplacian matrix, using a five-point stencil, B is a sparse matrix,
and the vector F1 is a source term, whose components may differ from the values of f at the
irregular grid points. Discretizing the Dirichlet condition (4.3) on the immersed boundary
∂�, we get a system of NV linear equations of the form

C� + DV = F2. (4.6)

1 Whether a grid point is regular or irregular depends on the time level. In other words, the label is updated at
different time steps.
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(xi, yj) (xi+1, yj)

ϕ(x, y) = 0

ϕ(x, y) > 0
ϕ(x, y) < 0 (x∗, y∗)

Γ

FIG. 4. The projection (x∗, y∗) of an irregular grid point (xi , y j ) on the boundary, where �(xi , y j ) < 0.

Thus, we obtain a system of equations for the solution � and the jump V on the boundary,[
A B
C D

][
�

V

]
=

[
F1

F2

]
. (4.7)

The Schur complement of (4.7) is

(D − C A−1 B)V = G, (4.8)

where

G = F2 − C A−1 F1.

Equation (4.8) for V is a much smaller system than Eq. (4.7) for (�, V ). We solve (4.8) by
the generalized minimum residual (GMRES) method. Each iteration of the GMRES method
involves one matrix–vector multiplication by A−1, which we compute by means of a call to
a fast Poisson solver for (4.5) with a specified jump V in the solution. Each iteration also
involves one call to the interpolation scheme to evaluate the residual R = C� + DV − F2

of the boundary condition (4.6) for the iterate.
This Poisson solver for irregular domains is second-order accurate. The number of calls

to the fast Poisson solver on the rectangular domain is equal to the number of GMRES
iterations and is almost independent of the mesh size, although it may depend on the
geometry of the domain.

The method described here applies to a multiconnected domain if the boundary of the
droplets is expressed in terms of a single level-set function in which the domain is divided
by two parts: the set of �(x) > 0, and the set of �(x) < 0.

We illustrate these statements with a numerical example. We solve the Poisson equation

−�	 = 4, in �,
(4.9)

	 = x2 + y2 + ex cos y, on ∂�,
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TABLE I

Results of a Grid Refinement Study for the Numerical Solution

of (4.9) on Domain (4.10) with a = 0.5 and b = 0.15

N E O n1 n2 k

32 4.21465 10−3 68 36 9
64 8.1371 10−4 2.3728 132 68 7

128 1.7614 10−4 2.2078 268 136 6
256 3.8196 10−5 2.2053 532 268 6
512 8.5548 10−6 2.1586 1068 538 5

Note. Here, N is the number of grid lines in the x and y directions, e is the
maximum norm error of the numerical solution, r is the ratio of successive errors,
n1 is the number of irregular grid points, n2 is the number of irregular grid points
inside the ellipse, and k is the number of GMRES iterations.

on an elliptical domain,

� = {(x, y) : x2/a2 + y2/b2 < 1}. (4.10)

The exact solution is

	 (x, y) = x2 + y2 + ex cos y.

In Table I, we show the maximum norm error E(N ) of the numerical solution on an N × N
grid for various values of N . We also show the number of irregular grid points n1, the
number of irregular grid points inside the boundary of the ellipse n2, which is equal to the
dimension of (4.8), and the number of GMRES iterations k. The order of convergence is
measured using

O = log[E(N )/E(2N )]

log 2
. (4.11)

This ratio in the results in Table I approaches number 2 as N → ∞, which indicates second-
order convergence. The number of GMRES iterations decreases slightly as N increases.
The stopping criteria for GMRES iteration is tol = 10−8.

4.2. A Modified Level-Set Method

We use the level-set method [27] to compute the motion of the wetted region associated
with a drop. In the usual level-set method, there is no need to keep explicit track of topological
changes in the moving region. In our problem, however, if several drops are present, then
they move independently of each other. We therefore need to modify the usual level-set
method so that we can detect the splitting and merging of drops. The identification of
separate drops is not required when we solve the Poisson equation for 	 , but it is required
when we use the volume constraint to calculate the mean curvature of the drops. The use of
a single mean curvature for the whole collection of drops would allow the transfer of fluid
volume between physically disconnected drops. Our modified level-set method preserves
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the volume of each individual drop. When a new drop is formed from the splitting of
old drops, or when two drops merge together, our algorithm adjusts the mean curvature
automatically with the correct volume.

We use the following algorithm to identify the wetted regions associated with the drops.
Suppose that the grid points are (xi , y j ) and the values of the level-set function �(xi , y j )
are positive in the unwetted region of the surface.

1. Choose any seed grid point (xi , y j ) with �(xi , y j ) ≤ 0. Find all points among its four
neighboring points (xi±1, y j±1) whose level-set function value is nonpositive and tag them.
These points are in the same region as the seed point.

2. Use the newly tagged points as an expanding boundary. Tag their connected but
untagged neighbors whose level-set function values are nonpositive.

3. Continue this expansion process until no new neighboring points can be tagged. If all
untagged grid points have positive values for the level-set function, then there is only one
drop and we are done. Otherwise, choose any untagged grid point that has a nonpositive
value for the level-set function and repeat the process until no untagged point has nonpositive
level-set function values.

We also evaluate the integral
∫

�p
	(�x) d �x for each disconnected component �p in the

above identification process. Since each grid point needs to be visited once, the complexity
of this algorithm is linear in the number of grid points. The array of the expanding boundary
points which we use to tag new points is one dimension lower than that of the computational
domain. To make the algorithm more efficient, we only track topological changes for the
grid points (xi , y j ) near the contact line that satisfy −�x ≤ �(xi , y j ) ≤ 0, where �x is the
grid size. The CFL condition for the level-set equation ensures that we do not miss any
topological changes.

When we detect that a drop has split into two, we use the above algorithm to identify
the wetted regions �1 and �2 of the two new drops. Solution of the Poisson equation gives
the scaled height function 	 on � = �1 ∪ �2. We then decompose the volume q of the
original drop into two separate volumes q1 and q2 such that q1 + q2 = q in the following
way,

q1 = q
∫

�1
	(�x) d �x∫

�
	(�x) d �x , q2 = q

∫
�2

	(�x) d �x∫
�

	(�x) d �x .

This splitting of the volume is based on the assumption that the mean curvature � and the
height h are continuous with time. Therefore the volume of the i th drop is proportional
to

∫
�i

	 (�x) d �x . When two drops merge we simply identify them as one drop and set the
volume of the new drop equal to the sum of the volumes of the old drops.

After these modifications, we use the local level-set method and corresponding numerical
algorithms in [23, 31] (see also the narrow band level-set method in [2, 28], and references
therein) to update the moving boundary, as follows.

1. Evaluate the normal velocity of the contact line from

Vn = �|∇	| − �S, �(t) = q∫
�(t) 	(�x, t) d �x ,

at the projections of the irregular grid points for each individual drop.
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2. Extend the velocity off the front to a neighboring computational tube that contains the
contact line. In our implementation, we solve, using an upwinding scheme, the convection
equation

∂Vn

∂t
+ ∇Vn · ∇�

|∇�| sign(�) = 0 (4.12)

(see, for example, [17, 31]), where sign(�) denotes the sign of �. Another approach that
can be used is the fast-marching method [1, 28].

3. Reinitialize the level-set function if necessary by solving

∂�

∂t
+ (|∇�| − 1)sign(�) = 0 (4.13)

(see, for example, [30, 31]). Note that there are other extension and reinitilization methods,
particularly the fast-marching method in the literature (see [28] and references therein).

4. Adjust the time step according to the computed velocity.

5. NUMERICAL EXPERIMENTS

In our numerical simulations, we embed the wetted region in a square, −2 ≤ x, y ≤ 2, or
−1.5 ≤ x, y ≤ 1.5, or 0 ≤ x, y ≤ 1. The spatial step size �x is the same in both the x- and
y-directions. Most solutions are computed on a 100 × 100, 200 × 200, or 300 × 300 grid.
The time step �t in the level-set method is �t = �x/(8.1). The tolerance for the GMRES
iteration is 10−8. We use � = |∇h| for most of simulations, except for those shown in
Figs. 14 and 18, in which � = tan−1(|∇h|) is used. The difference in the results obtained
from the two different formulas is hardly noticeable. The unit of the angles used here is
radian. The computations were performed on an Ultra-1 Sun workstation.

5.1. Drop Motion without Surfactant

In this subsection we present examples of drops moving on surfaces whose static contact
angle is constant in time. We assume that the contact-line velocity

Vn = � − �S (5.1)

depends linearly on the dynamic contact angle �. In Fig. 5, we show two numerical solutions
of drops with circular wetted regions approaching their equilibrium radius on a uniform
surface with a static contact angle of �S = 0.2. The drop volume is q = 0.05�, and the
equilibrium radius (3.1) is a0 = 1. The analytical solution is given in (3.3)–(3.4). In Fig. 5a,
the initial radius is greater than one and the drop contracts, while in Fig. 5b, the initial radius
is less than one and the drop expands.

We use this simple example to check the order of accuracy of our numerical algorithms.
We carried out a grid refinement study for a fixed time (t = 0.5) and the final state (t = 5)
of the expanding wetted region shown in Fig. 5b. We summarize the results in Table II,
where we show the maximum error E(t) in the radius, defined as follows. Let S(t) be the
set of irregular grid points and let (x∗

i j (t), y∗
i j (t)) denote the projection of (xi , y j ) ∈ S on the
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FIG. 5. The evolution of a circular contact line on a uniform surface with contact-line velocity (5.1) and static
contact angle �S = 0.2. The drop volume is q = 0.05�, and the equilibrium radius is a0 = 1. (a) A contracting
circle with an initial radius of r0 = 1.5. (b) An expanding circle with an initial radius of r0 = 0.75.

boundary. Then

E(t) = max
S(t)

{|
√

(x∗
i j )2 + (y∗

i j )2 − a(t)|}, (5.2)

where a(t) is the exact radius described in Section 3.1. As t gets large, a(t) approaches a0,
the equilibrium radius. We use the numerical solution at t = 0.5, and at t = 5, which is very
close to the steady-state solution, to check the order. The order of convergence parameter O
is defined in (4.11). The results in Table II confirm that the computed position is accurate to
order (�x)2. In Fig. 6, we show the history of the error between 0 ≤ t ≤ 0.5. The magnitude
of the error is O(10−6) and does not change very much with time.

In Fig. 7, we show a numerical simulation of the motion of drops with circular wetted
regions on a surface whose static contact angle �S is given by (3.5). The exact solution is
given by (3.6). When � is small, as shown in Fig. 7a, the drop moves slowly to the right,

TABLE II

A Grid-Refinement Study for an Expanding Circle

N E (t = 0.5) O E (t = 5) O

40 1.3596 10−4 1.1039 10−3

80 2.3127 10−5 2.5555 1.3798 10−4 3.000
160 4.6955 10−6 2.3002 3.5897 10−5 1.9426
320 1.1679 10−6 2.0074 9.3392 10−6 1.9425

Note. Here, N is the number of x and y grid lines, E(t) is the maximum error
in the radius at t = 0.5 and 5, defined in (5.2), and O is the order of convergence
parameter, defined in (4.11). The results confirm second-order accuracy.
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FIG. 6. Error plot E(t) defined in (5.2) in time interval 0 ≤ t ≤ 0.5. The order of the error is O(10−6).

while the radius of the circular wetted region approaches the value a0 = (0.2)1/3 = 0.585 . . .

given by (3.1). If � is not small, the radius of the wetted region changes more rapidly, as
shown in Fig. 7b.

Since we use the level-set method to capture the moving contact lines, we can “au-
tomatically” handle the merging or splitting of drops in our numerical computations.
Note that topological changes and singularities are really challenging questions physically,
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FIG. 7. Snap shots of circular wetted regions on a surface with contact-line velocity (5.1) and static contact
angle �S = �0(1 − �x). The volume is q = 0.01� and �0 = 0.2. (a) a0 = 0.58 and � = 0.1. (b) a0 = 0.5 and
� = 0.5.
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FIG. 8. The evolution of a dumbbell-shaped wetted region on a surface with contact-line velocity (5.1), a
uniform static contact angle �S = 0.2, and volume q = (0.05)�(0.5)3. The region expands outward.

mathematically, and numerically, because most of the continuous models and numerical
computations are not very faithful at that instant. However, for a well-posed system, which
is true for our problem from linear stability analysis, we can expect that the topological
transition and its effect on the whole system is very localized both in time and in space.
It is beyond the scope of this paper to address these issues either physically or mathemat-
ically. We just try to show that using the level-set method such topological changes can
be handled in a simple way if the model is still true, and hopefully our method can pro-
vide a good continuation after topological changes. Also it may not be possible to resolve
topological changes and singularities to arbitrary accuracy on any finite grid. However
the resolution should be better and finer features can be revealed when the grid becomes
finer.

In Fig. 8, we start with a drop with an initial dumbbell-like wetted region on a surface
with uniform static contact angle �S = 0.2(radian). The surface plot of the solution to the
normalized Poisson equation −�	 = 1 with 	 = 0 at the boundary is shown in Fig. 9.
The real shape of the drop is scaled by its volume, as in (2.16). Therefore, depending on
the drop volume q and the geometry of the contact line, the wetted region may expand,
partially expand and partially contract, or contract. If the drop has a relatively large volume,
q = (0.05)�(0.5)3, the initial contact angle is larger than the static contact angle everywhere
along the contact line, the wetted region expands, and kinks develop in the contact line, as
shown in Fig. 8. Eventually, the wetted region becomes circular with an equilibrium radius
a0 = 0.5. If, however, the drop has a relatively small volume, q = (0.05)�(0.2)3, the initial
contact angle is smaller than the static contact angle at some places along the contact line,
and the wetted region contracts at those places. In the solution shown in Fig. 10, the portion
of the contact line near the thin neck (concave part) has a contact angle that is smaller
than the static contact angle and retracts, and the initial drop splits into two small drops.
As explained in Section 4.2, we take special care to redistribute the total volume to each
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FIG. 9. The surface plot of the solution to the normalized Poisson equation −�	 = 1 with 	 = 0 at the
boundary of the initial dumbbell shown in Fig. 10.

new drop and to make sure each drop conserves its own volume. Due to the symmetry in
our example, these two drops are equal and their wetted regions eventually converge to a
disc of radius a0 = 0.2 ∗ (0.5)1/3 = 0.16. Figure 9 is the surface plot of the solution to the
normalized Poisson equation −�	 = 1 with 	 = 0 at the boundary of the initial dumbbell
in Fig. 10.
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FIG. 10. The evolution of a dumbbell-shaped wetted region on a surface with contact-line velocity (5.1), a
uniform static contact angle �S = 0.2, and volume q = (0.05)�(0.2)3. The region contracts and splits.
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FIG. 11. The merging of the two ellipses in (5.3). The surface has contact-line velocity (5.1) and a uniform
static contact angle �S = 0.2, and the total volume of the two drops is q = 0.05�.

Next we show the merging of two drops. We start with two drops whose wetted regions
are ellipses,

(x − 0.35)2

0.22
+ (y − 0.5)2

0.142
= 1,

(x − 0.65)2

0.122
+ (y − 0.5)2

0.242
= 1. (5.3)

Again if the volumes of the two drops are large enough they will expand. Figure 11 shows
the evolution of the wetted region in such a case. When the two drops merge we have to
sum their volumes and conserve the volume for the newly formed drop. While we have not
attempted to model the physical processes involved in detail, our numerical scheme appears
to capture a physically reasonable evolution process for the wetted region, in a quasistatic
regime where the adjustment of the drop surface to one of constant mean curvature is much
faster than other processes, even after the merging or splitting of drops.

5.2. Drop Motion with Surfactant

In this subsection, we present numerical solutions that include the effect of surfactant
deposition. To explain our choice of initial data, we first discuss the initiation of traveling
drops. In experiments (see Fig. 1), a circular drop placed on an unwetted gold surface
expands initially, then part of the advancing contact line pins and peels back, after which
the contact line retracts on the SAM that the drop has deposited, thus setting the drop
into motion. The direction in which the drop moves is arbitrary and depends on where
the contact line first pins. The macroscopic solution therefore depends very sensitively on
small-scale effects that lead to pinning. Possible physical mechanisms for pinning include
random thermal or mechanical vibrations, surface heterogeneities and roughness, and the
deposition of a SAM ahead of the macroscopic contact line by vapor or a thin precursor film
[12, 19]. An understanding of these phenomena requires a detailed study of the solid–liquid–
vapor–surfactant system near the contact line, which we will not attempt in this paper.
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According to the macroscopic model we use here, the wetted region of a drop placed
on an initially unwetted, perfectly wetting surface always expands and spreads out over
the surface. As a result, the motion of the contact line is never influenced by the effects of
surfactant deposition. This exact solution is, however, sensitive to perturbations that cause
part of the contact line to begin retracting. In our numerical solutions, we perturb the wetted
region in a controlled way by introducing nonzero initial data for the wetting time on part
of the surface, meaning that part of the surface is covered by surfactant. This initial data
mimics a partially wetting surface heterogeneity that can set the drop in motion. Once the
drop moves onto an initially unwetted part of the surface, the nonzero initial wetting time has
no further direct influence on the drop, and the drop motion is sustained by the interaction
of the drop with its own SAM.

First, we compare the asymptotic solution for a nearly circular traveling drop on a partially
wetting surface, derived in Section 3.2, with a numerical solution. We use the static contact
angle

�S = �0 + �2�, (5.4)

where �0 = 0.2 and � = 0.05. The wetting time � is given by

� (�x, t) = �0(�x) +
∫ t

0
��(s)(�x) ds, (5.5)

where �x = (x, y). We suppose that the left-half plane x < x0, where x0 = −0.585, has been
wetted, with initial wetting time

�0(�x) =
{−�(x − x0), if x − x0 < 0,

0, if x − x0 ≥ 0,
(5.6)

where � = 6.538. The initial contact line is a circle centered at (x0, 0). As shown in
Fig. 12, the wetted region moves into the right-half plane x > x0 and approaches a fixed,
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FIG. 12. The motion of the contact line on a surface with contact-line velocity (5.1) and static contact angle
(5.4)–(5.5), with �0 = 0.2 and � = 0.05. The volume of the drop is q = 0.01�. The initial wetting time is given
by (5.6) with � = 6.538 and x0 = −0.585. The initial location of the contact line is a circle in the left-half plane
centered at (−0.585, 0) with radius 0.585. The drop approaches an elliptically shaped traveling drop.
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TABLE III

A Comparison of the Asymptotic Values of the Velocity V and

the x and y Diameters dx and dy of the Wetted Region with Values

Obtained from the Numerical Solution shown in Fig. 10

V dx dy

Asymptotic 0.0356 1.055 1.211
Numerical 0.0364 1.06 1.22

approximately elliptical shape that travels with constant velocity. In Table III, we com-
pare the numerically computed values of the drop velocity and the diameters of the wetted
region with the values computed in Section 3.2 by perturbation theory. We compute the
asymptotic values from (3.28) and (3.30), neglecting the order �2 terms, using the numeri-
cally computed curvature of the traveling drop, which is �0 = 0.79, with associated radius
a0 = 0.506, defined in (3.13). There is excellent quantitative agreement.

In Figs. 13 and 14,2 we show numerical solutions in which the contact-line velocity is
given by (5.1), and the static contact angle �S is given by

�S =
{

�/T, if 0 ≤ � ≤ T,

1, if � > T .
(5.7)

The only difference between Figs. 13 and 14 is that � = |∇h| in Fig. 13 and � = tan−1(|∇h|)
in Fig. 14. The difference is hardly noticeable.

The wetting time � is given by (5.5), with an initial wetting time (5.6), where � = 0.1
and x0 = 0. The initial contact line is a circle centered at (0, 0). We show solutions for
various values of the deposition time scale T . In Figs. 13a and 13b, where T = 0.5, and
Fig. 13c, where T = 5.0, the wetted region moves to the right into the initially unwetted
right-half plane, because of the initial wetting time gradient, and distorts because of the
effects of surfactant deposition. The wetted region continues moving to the right with an
approximately constant velocity. The shape of the wetted region is roughly constant, except
for the formation of thin liquid trails at the top and bottom edges in Fig. 13b. In Fig. 13d,
where T = 50, the wetted region expands, and we do not see the formation of a traveling
drop on the time scale of our numerical solutions. This behavior is in qualitative agreement
with the experiments, where a drop of a sufficiently dilute solution of HDT expands and
spreads out across the entire surface.

The distortion of the wetted region into a traveling crescent shape seen in Figs. 13a–13c
is qualitatively similar to experimental observations of reactive autophobic spreading. The
shape of the traveling drop in Fig. 13b for T = 0.5 is strikingly similar to the experimentally
observed shape of the drop shown in Fig. 1C of [4]. The liquid trails that form at the edges
of the wetted region in the numerical solution are more oblique than the ones observed in
the experiment, presumably because the contact lines pin in the experiment. The trails may
not be fully resolved in our numerical solutions. They do not appear in the coarser grid

2 In our implementation, we use an adaptive time step. We save the level-set function at certain steps to analyze
the results. Therefore the data shown in the figures are the results at recorded times a which can be arbitrary
nonnegative real numbers.
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FIG. 13. The motion of the contact line on a surface with contact-line velocity (5.1). The static contact angle
is given by (5.7), the wetting time by (5.5), and the initial wetting time by (5.6), with � = 0.1 and x0 = 0. The
initial location of the contact line is a circle in the left-half plane centered at (−0.5, 0) with radius 0.5, and the
volume of the drop is q = 0.01�. The solutions are shown for various deposition time scales: (a, b) T = 0.5;
(c) T = 5; (d) T = 50. The solutions in (a), (c), and (d) were computed on a 100 × 100 grid, and the solution in
(b) was computed on a 400 × 400 grid. The contact lines move from left to right in (a)–(c) and expand in (d). The
times at which the contact lines are plotted are shown in the figures.

solutions, and on intermediate grids we may see the formation of only one of the trails. The
trails persist under grid refinement, however, as illustrated in Figs. 15a and 15b.

In Fig. 16, we show a plot of the drop height at different times for the case T = 5, and in
Fig. 17, we show a gray-scale map of the wetting time. The wetting-time color map indicates
the amount of surfactant deposited by the drop, with a wetting time of � ≥ 5 corresponding
to a fully organized SAM.

In Fig. 15, we show a set of solutions with different initial data for the wetting time. The
contact-line velocity is given by (5.1), and the static contact angle is given by (5.7). The
initial wetting time is

�0(x, y) =
{

1 − [(x − x0 + r0)2 + y2]/�2, if (x − x0 + r0)2 + y2 < �2,

0, otherwise.
(5.8)

The initial location of the contact line is

(x − x0)2 + y2 = r2
0 . (5.9)
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FIG. 14. The motion of the contact line on a surface with contact-line velocity (5.1). The parameters are
exactly the same as in Fig. 13 except the dynamic contact angle of the drop is given by tan � = |∇h|. We can see
that the motion of the contact line is similar to that in Fig. 13. The only noticeable difference is in the position of
the contact line in (c).

This initial data corresponds to a partially wetting, circular surface heterogeneity, centered
at x0 − r0, located at the left edge of a circular wetted region, centered at x0. In the solutions,
the radius of the heterogeneity is � = 0.1, and the radius of the wetted region is r0 = 0.5.
The overall shapes of the wetted regions are similar to those of the wetted regions in Fig. 13.

Now, we show some numerical solutions that include contact-angle hysteresis. The
contact-line velocity is given by (2.8):

Vn =




(� − �A)m, if � ≥ �A,

0, if �R < � < �A,

−(�R − �)m, if � ≤ �R .

(5.10)

We observe a variety of different behaviors, depending of the choice of the exponent m and
the expressions for �A and �R . We will present a few illustrative solutions without attempting
to explore all of the possible behaviors. We suppose that the advancing and receding contact
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FIG. 15. The motion of the contact line on a surface with contact-line velocity (5.1) and (5.7). (a–c) T = 0.5
and q = 0.1/�. (d) T = 5.0 and q = 0.1/�. In (a), (b), and (d) the initial location of the contact line is a circle
(5.9) of radius r0 = 0.5 centered at (x0, 0) with x0 = −0.5. The initial wetting time is given by (5.8) with � = 0.1.
(c) The same data as in (a), except that x0 = 0. The solution shown in (a) is computed on a 200 × 200 grid, and
the solutions shown in (b)–(d) are computed on a 300 × 300 grid.

angles are given by

�A =
{

�A�/T, if 0 ≤ � ≤ T,

�A, if � > T,
�R =

{
�R�/T, if 0 ≤ � ≤ T,

�R, if � > T,
(5.11)

where �A = 1.2, �R = 1.0. The solutions for m = 1 appear similar to the previous solutions
for m = 1 without contact-angle hysteresis. The solutions for m = 3 evolve more slowly
than the ones for m = 1, and the wetted regions deform less. This is presumably because
� − �A, or � − �R , is less than 1 at the contact line, so the cubic power law dependence with
m = 3 in (5.10) leads to smaller contact-line velocities than the linear dependence with
m = 1.
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FIG. 16. The height h of the drop at different times for the solution in Fig. 13c.

Finally, we show a grid refinement analysis for the example above in Fig. 18 to see how
well our method deals with the less regular flow. The mesh lines are taken as N = 50,

100, 200, and 300. All the simulations are qualitatively and quantitatively similar in terms
of the position and the size of the droplet. But only reasonably fine grids (N = 200, 300 in
this case) can capture the fine structure of the tail.

FIG. 17. A gray-scale map of the wetting time � for the solution in Fig. 13c.
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FIG. 18. A grid refinement analysis with 50 × 50, 100 × 100, 200 × 200, and 300 × 300 grids. The contact-
line velocity is given by (5.10), and the advancing and receding contact angles are given by (5.11) with �A = 1.2,
�R = 1, T = 5, m = 3. The drop volume is q = 0.0157�. We use the relation tan � = |∇h|. We see similar
qualitative and quantitative behavior, but the find grid gives better resolution for the tails.

6. CONCLUSIONS

We have formulated a model for the reactive autophobic spreading of drops and devel-
oped a numerical scheme, based on the level-set method and the immersed interface method,
to compute numerical solutions of this model. The numerical solutions of traveling drops
agree qualitatively with experimental observations, and quantitatively with analytical so-
lutions of the model equations. Further work is required to make quantitative comparisons
between experimental measurements and numerical solutions, to use more-detailed models
of the fluid hydrodynamics and surfactant transport near the contact line, and to extend our
numerical scheme to solve these more detailed models.
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